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The effects of replacing the usual no-slip boundary condition by a slip-coefficient boundary 
condition on solid walls are determined by means of Galerkin fir.itc element solutions of 
the Navier--Stokes equation system for steady two-dimensional discharge of liquid from a 
sharp-edged slot-the “die-swell” flow, in which menisci separate from contact lines on 
the die edges. A velocity pressure formulation is used with a mixed intcrpofation basis of 
quadratic serendipity elements for velocity and bilinear functions for pressure. Alternate 
formulations of the free meniscus computation are examined: iteration on the normal 
stress condition proves superior except when surface tension is low. Even if slip is possible, 
the no-slip boundary condition proves accurate for Newtonian die-swell llow, provided tht: 
slip coefficient ,G is less than IO-” b.:p (p, viscosity; b, the channei half-width). Slip at the 
solid wall allcviatcs the apparent stress singularity at the exit. When p > 10 n h/p, slip 
rcduccs die swell even of Newtonian liquid; local slip near the contact line is sufficient. 
Kaising the Reynolds number dccrcascs the upstream influence at the exit on the ve!ocit) 
profile and rcduccs die swell. Surface tension straightens the free meniscus profile and thus 
reduces die swell. Profile straightening is compounded by actions of surface tension and slip 
together. 

1. INTR~IHJCTION 

The physics of flow in the vicinity of LI contact line where a fluid interface separates 
from a solid surface is not clear. The subject is under investigation from both mo!e- 
cular (Salter [I]; Del Cerro and Jameson [2]; Salter et al. [3]) and continuum view- 
points (Huh [4]; Huh and &riven [S]; Richardson [6]; Michael [7], Hocking [$I; 
Dussan [9]; lfuh & Mason [lo]; Silliman and Striven [I I]). At the continuum level 
there is no difficulty when the contact line is straight and static and flow in its neigh- 
borhood is rectilinear and parallel to it. Indeed, analysis of rectilinear rivulet flow on 
inclined surfaces is straightforward (Towell and Rothfeld (121; Kern [13]; Bcntwich 
et al. [14]). However, when there is flow perpendicular to the contact line, i.c., at a 
separation line, conventional fluid mechanical analysis indicates that cxcccdingly 
high stresses should occur in the neighborhood of the line. ‘These include wall shear 
stress large enough to raise the question of whether liquid can after ail slip along a 
solid boundary. lr so, then the “no-slip” boundary condition of fluid mechanics may 
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not be adequate in the neighborhood of a contact line. While Navier [15] formulated 
a boundary condition of the third kind which admits slip, Stokes [16] argued for the 
more specialized boundary condition of the first kind, which does not. The controversy 
they launched was settled by experiments with flow past fully wetted surfaces, the 
ultimate experiments of that era being those of Whetham [17] with capillary tubes. 
The no-slip hypothesis was universally adopted for liquid flow past solid on the basis 
of experimental evidence obtained in the absence of contact lines. Thus the question 
of slip near contact lines remains open. 

Reasons for questioning the no-slip hypothesis are the injnite stresses at contact, or 
separation, lines predicted by theoretical analyses by Richardson [6] and Michael [7]. 
Such stresses are also indicated by the finite-element simulation by Nickel1 et al. [IS]. 
As Huh and Striven [5] pointed out, there is from the standpoint of continuum 
physics a need of relief from stress singularites at contact lures, for Nature abhors 
infinities. The occurrence of an infinity in continuum physics signals breakdown of one 
or more premises of the theory. Possible reliefs from the stress singularities at moving 
contact lines, where the singularity is nonintegrable, were discussed by Huh and 
Striven [5] and investigated further by Hocking [S, 191, Dussan and Davis [20], 
Dussan [9], and Huh and Mason [lo]. The singularity at a static contact line evidently 
is integrable, e.g., the total shear force on the solid wall upstream is finite. But though 
this singularity is weaker than that at a moving contact line, it has so far received less 
attention in the literature. 

Apparent slip on the macroscopic hydrodynamic scale may originate in any of 
several different phenomena at smaller-length scales [21]. As Hocking [S] pointed out, 
on the microscopic hydrodynamic scale of the amplitude of surface roughness, 
liquid-though it did not slip locally past the solid surface-could appear to slip at a 
mathematical surface located at the mean elevation of the rugosities of the solid. This 
appearance could be accentuated by the presence of lower viscosity gas in the pits and 
grooves of the rough solid surface [S]. Similarly, as in certain flowing polymeric 
liquids where viscosity and even composition are highly dependent on shear rate and 
shear stress, apparent slip could arise in a thin stratum of liquid of lower viscosity 
formed next to all of a smooth solid surface [22] or preferentially in regions of higher 
shear next to the peaks and ridges of a rough solid. This is one way a different con- 
stitutive behavior of the liquid adjacent to the solid surface could arise, particularly in 
areas of high shear. On the scale of long-range force interactions between liquid and 
solid, i.e., the normally submicron scale of electrical double-layer and quantum 
mechanical Van der Waals or dispersion forces, the constitutive behavior of the liquid 
might be altered to reduce effective viscosity (however, indications are that effective 
viscosity next to a solid is likely higher, not lower: cf. [23, 241). Such an effect also 
could vary locally according to the topography of the solid. Finally, on the molecular 
scale there might be “true” slip, i.e., appreciable departure locally from the thermo- 
dynamic equilibrium distribution of molecular velocities within a small number of 
molecular diameters’ distance from the solid such that molecules of one layer shift 
past those of another in some degree of coordinated, directed motion (as in slip in 
rarefied gas dynamics: cf. [25]). The ultimate slip on this scale would be outright 
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shear fracture, as within a solid or between bonded solids-cohesive or ad 
failure, respectively. 

On the macroscopic hydrodynamic scale it appears that any of these mechanisms 
can be modeled, crudely at least, by extrapolating the macroscopic constitctive 
behavior, including the viscosity coefficient, to a suitably located smooth mathe- 
matical surface to represent the liquid-solid boundary region, and assigning there a 
transfer coefficient for tangential momentum which multiplies the discont~~n~ty 
between extrapolated tangential velocity of the fluid, n, and the tangential velocity of 
the solid, us . The product is the flux of tangential momentum across the mathematical 
surface. This flux must equal that transmitted to the surface by the action of viscosity 
in the liquid. Thus, if T is the stress tensor in the liquid, n the unit normal to the 
surface, and I,, = 1 - nn the geometric tensor that projects vectors onto the local 
tangent plane to the surface, one has 

--U/P) 111 . (u - us) = 111 I (la ’ ;i,:) 

This is Navier’s [I 51 slip condition at a solid wall, in full vector form. The momentum 
transfer coefficient is written as l//3, where /3 is the slip coefficient. Both are positive 
quantities and a minus sign appears in (1.1) because momentum must be transferred 
across the velocity discontinuity from faster-moving to slower-moving Auid, just as 
shear viscosity must be positive in the Newtonian constitutive relation for continuous 
velocity fields, in order to account for tangential momentum transfer down a velocity 
gradient. In two-dimensional flow configurations the projection tensor is given simpl;y 
by I,, = tt, where t is the unit tangent to the surface, and Navier’s slip condition 
becomes [I 1] 

-(l/P)t.(u-uS)=nt: (1.2) 

Equations (I. 1) and (1.2) relate velocity and velocity gradients at the boundar 
are thus boundary conditions of the third kind. 6 may depend on the stress ten 
and otherwise on location along the boundary surface. If it is independent 
stress tensor and the stress tensor is that for Newtonian fluid, (1, I) a 
boundary conditions. The limit p -+ co gives perfect slip, i.e., n ~ 
limit /3 + 0 gives no slip, i.e., u = us . 

In this paper we analyze the two-dimensional, steady Ao:~ of incompressibLe 
Newtonian liquid out of a sharp-cornered slot, with and without slip along the two, 
parallel mathematical planes chosen to represent the channel walls upstream of the 
corners. We contrast the effect of applying (1.2) instead of no slip over the entire waii 
versus just in the upstream vicinity of the corner. We sunpose that the Aow separates 
from the solid walls at the sharp corners, as in Fig. 1, which shows the well-known 
die-swell case. Thus the corners are three-phase contact lines at which the two -Free 
menisci of the liquid jet are pinned to the solid walls. We compare the sohuions 
without and with slip for two purposes: first, for indications that absence of siin 
generates infinite stress at the contact lines and presence of slip alleviates the stress 
singularity; and second, to see to what extent the solutions with no slip can be used 
in place of those with the slip allowed by Navier’s old hypothesis. 
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-Separation LineXoniact Line 

FIG. 1. Die-swell geometry and mesh employed in comparisons of numerical solutions. 

In either case the flow domain is irregular and the problem is intractable by conven- 
tial mathematical analysis employing an infinite set of basis functions defined on a 
standard domain. Instead we use a finite set of basis functions each defined on a sub- 
domain of adjustable size and shape and, though we lose higher-order differentiability 
which would actually be superfluous, we arrive at an approximate solution which is 
accurate in a weighted-residual sense. In particular we use the Galerkin finite element 
method based on the divergence form of the Navier-Stokes and continuity equations 
1261, with a mixed interpolation consisting of quadratic serendipity elements for 
Cartesian velocity components and bilinear elements for pressure [27]. The free 
meniscus is curved and for the subdomains adjoining it we use curvilinear rectangles 
each having one side that approximates a portion of meniscus. The thicknesses of 
successive ranks of subdomains are in constant ratios to the distance between the free 
meniscus and the symmetry plane; the menisci themselves are interpolated with 
quadratic isoparametric elements for flow field calculations, and with Hermite cubic 
or arc-of-circle elements for curvature estimates. In the neighborhood of the slot exit 
the velocity and pressure gradients are relatively steep and so there we choose smaller 
subdomains.?he finite element mesh for most of the work is shown in Fig. 1; results 
were checked by repeating calculations with relined meshes in the neighborhood of 
the contact line or, in certain cases, with full quadratic (nine-point) elements. For 
meniscus problems with regions of steep gradients the finite element method, though 
it is more laborious to program for automatic calculations, has distinct advantages 
over finite difference approximations [18]. 

The solutions depend on computation of the meniscus profiles. Previously this has 
been done in the finite element method by means of Picard iteration techniques [ 18,281 
that proceed in a three-part cycle: (i) a meniscus shape is assigned; (ii) a flow field 
within that shape is calculated after temporarily discarding one of the three boundary 
conditions at the meniscus, viz., the kinematic condition, the normal stress balance, 
or the vanishing of shear stress (unless one of these is relaxed the flow problem is 
overspecified); and (ii) a new meniscus shape is then computed to satisfy as closely as 
possible the boundary condition that was temporarily relaxed, and the cycle is 
repeated until the desired degree of convergence is attained-if it does indeed con- 
verge. The best choice of boundary condition to relax was not known and has been 
the subject of controversy. 
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In this paper we investigate two leading alternatives, employing as an aid a closely 
related successive approximation procedure for systems of linear equations. The 
behavior of the linear problem provides insights which we find are confirmed by the 
results of computing solutions of the full nonlinear problem for a wide range of 
capillary: 

2. BASIC FORMULATION 

The weak form of the Navier-Stokes and continuity equations for two-dimensional, 
steady, incompressible flow is well established and the finite element version is easily 
constructed once the basis functions are chosen for expanding the component veloci- 
ties (here taken to be Cartesian components), the pressure, and the location of the 
meniscus : 

31 = ,il Zli4ji(X, y), 
s 

2) = 5 Birp(X, y), p = f p$p(x, y): k = c /Q(x). (2.1) 
i=l i=l i=l 

Our choices for the q$‘s, #$‘s, and xr’s are named above; those for the (fig’s and &‘s are 

the ones recommended by Gartling et al. l-271. With body forces excluded, the mamen- 
turn equations are 

where T = --pl $ [Vu + (VU)~], i?A is the boundary of the flow domain A, and 
lqR, = (&-I j-u dy is of course Reynolds number. On the boundaries the traction 
n T can be decomposed into normal and tangential parts to give 

Each of these momentum equations is to be resolved into X- and y-components. The 
continuity equations are 

Along each portion of the boundary (Fi,. 0 1) there must be one boundary condition 
for the ,v-momentum equations and one for the y-momentum equations. In addition, 
along the meniscus a third condition is necessary because its location is ~~~kuo~~i~ 
a priori. With an open system as in Fig. I, conditions at the inflow and outflow are 
needed. Asymptotic behavior can easily be deduced: The inlet velocity profiles are 
rectilinear and semiparabolic u(.x, u) = g(u) = a, f aly i- LZ,Y~ (appropriate Q~ i a, - 
and a,) and v(x, y) = 0; whereas far downstream the outlet velocity profile is Eat, 
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U(X, v) = constant, and a(~, u) = 0. At the exit then nn : T = 0, where T = Vu + 
(Vu) is the viscous stress. Calculations are made with the inflow and outflow condi- 
tions prescribed at large butfinite distances from the exit; tests must be performed to 
ensure that the distances are great enough not to affect results in the domain of 
interest. The set of conditions is 

At inflow n - ” = g(u) t-u=0 
plane: 

At outtlow nn:l=O t-u=0 
plane: 

At midplane tn:T=O n*u=O 
of symmetry: 

At solid Btn:TSt-u=O n*u=O 
walls: 

At free tn:T=O A?-,nn:T=2H 
meniscus 

n-u=0 

The slip parameter and capillary number are, respectively, 

B E ,&lb and Nca = PW, 

- 

(2Sa, b) 

(2Sc, d) 

(2.5e, f) 

Pg, h> 

&a~* (2.5i, j) 

(2.5k) 

where b is the half-breadth of the channel, TV the liquid viscosity, U the average 
volumetric flow rate per unit area, and 0 the surface tension of the free meniscus; the 
mean curvature of the latter is given by 

2H = h&l + h2)-3/2, (2.6) 

where h is distance from the midplane of symmetry and subscript x denotes differen- 
tiation with respect to X. p+ is the level of total normal stress on the meniscus where 
it has zero mean curvature, whether or not such a plane actually exists in the flow 
domain. In die swell p* is equal to zero. Specification of p* can be considered to be a 
“meniscus equation” boundary condition [29] as can the two other conditions which 
the meniscus must meet in the die-swell case: h = 1 at die exit, and h, = 0 at outflow 
plane. Finally, pressure is arbitrary up to an additive constant p,, (which in die swell 
can be set to the pressure in the exterior fluid): in the continuous case the solution 
can be expressed in terms ofp - p. ; however, in the discretized case the corresponding 
procedure is to set p,, = 0. 

The essential boundary conditions are those involving only the velocity, not the 
stress, and must be satisfied by the basis functions 4” chosen at (2.1). The natural 
boundary conditions are those involving only the stress and are eventually combined 
with boundary terms in equations for residuals in the Galerkin procedure. The slip 
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equation (2.5g) is a boundary condition of the third kind, or Robin condition, and 
must be incorporated as the term [30] 

J t . u ds. 

Now when expansions (2.1) are substituted in (2.3)-(2.5), the result is a se? of 
simultaneous nonlinear algebraic equations expressing the conditions that the residual 
of the x-momentum equation and the residual of the y-momentum equations each be 
orthogonal to all of the p’s7 and that of the continuity equation be orthogonal to all 
of the @‘s. There is a single equation for the free meniscus node at the outflow plane, 
where the pressure level p* in the liquid is specified. Also in the set are equations 
requiring certain boundary residuals to be orthogonal to the xi’s, or an equivalent 
equation subset for the 1~~‘s. The unknowns in the algebraic equations are the coelh- 
cients ui , t>i I p-i , and lzi in (2.1), which are nodal values on the finite element mesh 
(cf. Fig. 1). Suppose there are s velocity nodes on the meniscus (including the one at 
the contact line and the one at the outflow plane) and b velocity nodes elsewhere on 
the boundary. The number of meniscus elevation nodes is of course s also, Then 
n=N- s - b is the number of internal velocity nodes. The total number of pressure 
nodes is vt~. The columns of a matrix can be identified with each of these unknowns; a 
convenient ordering is shown in Fig. 2. The rows of the matrix can be identified with 
the algebraic equations, which are arranged in a convenient order in Fig. 2. If a given 
unknown does not appear in a given equation, let the corresponding matrix element 
be zero; if it does, let the element be the term(s) in the equation in which the unknown 
occurs. This is the incidence array of the equation set (the name applies also to the 
purely numerical matrix where the nonzero elements are all replaced by unity);). 
Rather than displaying all of the elements, Fig. 2 shows only the fill structure: i.e.? 
those rectangular blocks which contain zeros exclusively and those blocks which do 
not. The fill structure clarifies the relationships among alternative strategies for 
solving the equation set [31]. Here the occurrence of identical nonzero elements in 
different rows of the same column is critical. The reason is that the integration by parts 
in the Galerkin procedure generates boundary terms that match terms in boundary 
conditions-boundary conditions that govern fluxes in and out of the flow domain 

What is immediately evident about the incidence array in Fig. 2 is that it is ret- 
tangular: there are more equations than unknowns. Indeed, the number of unknowns 
is 3s + 2(12 + b) + nz + 1, whereas the number of equations is 5s f 2(n f b) T 
rfl + 1, an excess of 2s. However, the momentum and continuity equations do not 
form an independent set until 2s boundary conditions have been combined with them. 
Plainly, among the total of 3s meniscus boundary conditions there are many ways of 
selecting 2s. 

One alternative is to substitute the s normal stress and s shear stress boundary 
conditions into the momentum equations and retain the s kinematic boundary condi- 
tions as autonomous. A second alternative is to substitute the 3 shear stress boundary 
conditions into the momentum equations, use the s kinematic conditions as essenriai; 
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” Vi’5 m Pi’5 p* bq's bvi's sq's svi's shi's 

n 
x-momentum 

s 

x-momentum 

i 
0 

n v i/ / 

y-momentum (y / 

%+2(n+b)+m+l EQUATIONS - 2 + Z(n+b) ; m+l UNKNOWNS 

FIG. 2. Incidence array for free meniscus problem. n = number of internal velocity nodes; 
s = number of free meniscus velocity nodes; /TZ = number of pressure nodes; b = number of velocity 
nodes on the part of the boundary excluding the free meniscus. 

conditions on the velocity field (replacing s momentum equations), and retain the s 
normal stress boundary conditions as autonomous. There are yet other alternatives, 
including the use of linear combinations of equations (which could have advantages, 
as touched on below), but these are the most obvious because each eliminates one 
condition on the tangential component of a boundary vector and one condition on the 
normal component of a boundary vector. These two alternatives are evaluated in the 
next section. 

In either case a nonlinear equation set must be solved. Although it could be solved 
all at once by standard nonlinear techniques, this approach has not appeared in the 
literature, evidently because the nodal elevations hi occur as limits of residual integrals 
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fjvhich need not be a hindrance, according to a study still in progress). Las&ad, the 
equation set has been partitioned into one subset of s meniscus equations and a 
second subset of the other 2s + 2(n + b) + 172 f 1 equations. By fixing the s men&us 
nodal elevations iz, i a flow field is calculated from the second subset; new ki are then 
calculated from the first subset, and the process is repeated-the Picard iteration 
technique outlined in the Introduction. Basically it is a block Gauss-Seidel scheme 
[XI!] extended to nonlinear systems. Let the flow field unknowns be lumped together, 

‘Then schematicaliy, 

X~ll+l.~?wtl) = [ M(x~~+l,d, bjKh,))]-1 

x [b&p+l.m) , Q.&Q _ ~~(~(n+Ld, @z,j) hic7J1, (2.8) 

hj"+l,7T1) = [~(X~~n+l,nl,), ?+l.r))]-r 

x [b, (X!n+%) 
2 2 

) @'I,') ) _ SZ(Xjn+l.~i~,j, p+l.i)) @+lA]* (-J'i) 

Equation (2.8) represents the calculation of the flow field variabies given a free surface 
location, h$.“T7~). The first superscript on xi indicates the (12 + 1) st flow field. A non-. 
!inear system of equations must be solved to find the new X~ and the second super- 
script denotes this iteration: to start this iteration xi (n+l:o: ~ <~!n,‘rl,i z , where JQ denotes 
the converged solution at the 12th level. M and S, represe t the linearized dependence 
of the momentum and continuity equations on xi and respectively, their forms 
depending on the type of iteration. b, represents the forci terms in the iteration and 
includes the residuals in a Newton scheme. Equation (2.9) represents the calculation 
of a new free surface location. The converged flow field from (2.Q given by 
is used in this calculation and again a nonlinear iteration is necessary. 
represent the linearized dependence of the boundary equations on hi and x;i ) resnec- 
tively; b, is the forcing term. The iteration starts with LB$“+~.“’ = LI~“~~c), where lC 
denotes convergence at the rzth level. From now on we will drop the second super-. 
script and leave it implicit whenever nonlinear systems are involved. 

3. FREE MENISCUS DETERMIXATION 

Kinematic iteration means that after a flow field has been caiculated a new free 
surface is determined from the kinematic condition. In differential form it is 

For die swell? the boundary condition is h in+l) = I at x = 0. This and (3.1) can be 
discretized and linearized to give 



296 SILLIMAN AND SCRIVEN 

}*h+l) 
1 

.“2 
= 

J 
z@+l)(x, Iz(“))/zI(“+~)(x 2 /I’“‘) d,x 

q 

(3.2) 

Here hi is the meniscus height at node i which has x-coordinate xi . The integrals are 
easily evaluated except for the first one. At the separation point .‘cl , both u(“+~)(x, I?(“)) 
and zP+I)(x, IV”)) are zero and their ratio is indeterminate from the finite element 
expansions. The difficulty can be sidestepped by employing an open-ended integra- 
tion formula, for instance, Gaussian quadrature. Alternatively, integrating the con- 
tinuity equation in the y-direction and invoking Eqs. (3.1) and (2.5f) generates an 
integral analog of (3.1): 

s 

hi 
U(S( , ~7) dy = constant flow rate = Q. (3.3) 

0 

If a t-point Gaussian integration formula is employed in integrating (3.3) and on (0, 1) 
& is the jth Gauss point, with weighting n’j , then the discretized form is 

,$ I-P~u(~+~)(x~ , &i~l(~+~)) I$+‘) = Q, 

(3.4) 

Because the ratio of velocities is not needed, this equation set also avoids the inde- 
terminacy in the kinematic boundary condition at the separation point Xi ; however, 
it is a nonlinear set of equations that must be solved instead of a linear set. The non- 

TABLE I 

Comparison of Various Iteration Schemes 

Time” per iteration 

Free surface part Flow part 
Total time” 

per iteration 

Kinematic iteration 
Differential 
Integral 

Normal stress 

2 x 10-Z 8.6 8.6 
1.5 x 10-I 8.6 8.8 
3 x 10-l 8.6 8.9 

a Time is in CPU seconds. 
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linear set proved to be many times more costly than the linear set (see Table I) and 
gave answers to within 1 % of those of the differential form. The differential form 
originally proposed by Nickel1 et al. [18], thus is more effective in this application 

It is useful to represent the nonlinear equation set by an array relafedto the lineariza- 
tions of it, the form of a linearization depending on the choice of iteration procedure 
(Newton, Picard iteration, etc.): 

JA #‘O . u dA (S A t/Iv . u dA) 

Boundary Terms 
I _----_-----------_---,------------- 

&z 
I 

-L’ + 11 --& 
d/7 

I 
YG 

The broken lines partitioning this incidence array separate terms in each equation 
which are the sources of corresponding elements in linearizing: in particular in the 
vertical column on the right, elements representing coefficients of h,‘s; and in the 
horizontal column at the bottom, elements representing coefficients in the linearized 
free meniscus equations. The terms in parentheses represent quantities generated by 
coupling between flow field unknowns and free surface unknowns when the latter 
enter through the limits of integration. It turns out that the sum of squares of these 
terms is smaller than that of other terms in the same equations, reflecting a low degree 
of coupling with the interior of the flow field. If a Newton method is employed, the 

1 and b, terms also depend on how field and free surface unknowns. 
In the flow calculation an estimate of the mean curvature 3 must be ma.de for 

each element along the meniscus. The isoparametric representation of the free surface, 
a quadratic function, could be used. However, the quadratic function cannot m5cid. 

even the gross behavior of the die-swell meniscus, because it requires increasing curva- 
lure as inclination falls, whereas in actuality both the curvature and slope of the menis- 
cus decrease in the downstream direction. For this reason, the three nodal values of 
the free surface are fit to a circle and this is used to estimate the curvature. This 
approach is essentially the same as the one employed by Tanner [33] for a circular jet. 

3.2. Nomnl Stress iteration 

The alternative is to use the normal stress conditions to calculate new meniscus 
locations hjnil) after the (~2 + 1)st approximation to the flow field has been calculated, 
the kinematic conditions having been satisfied as essential conditions in that calcuia- 
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tion. This is basically the approach taken by Orr and Striven [2S], although they 
handled the kinematic conditions in a different way than is done here. 

New profiles are generated from the discretized form of 

= ~~,~““+l’~‘n+l’ . T(n+l) (3.6) 

The boundary conditions on (3.6) for the die-swell case are 

h(0) = I; (3.7) 

h,(L) = 0. (3.8) 

It appears inconsistent that the meniscus should have two boundary conditions in the 
normal stress iteration yet only one in the kinematic iteration. However, requiring in 
the kinematic case that v = 0 at x = L in the flow field calculation ensures that (3.8) is 
satisfied if (3.1) is. Equation (3.6) is discretized by expanding 12 in a finite element 
basis and generating the Galerkin equations (cf. Orr et al. [34]). For the reasons given 
in Section 3.1, cubic basis functions were employed in the calculations and the resulting 
profiles interpolated to give the s nodal values of /zi needed in the isoparametric 
representation of the free surface. In the normal stress iteration scheme, a nonlinear 
equation set must be solved to get h (la-tl). When Newton’s method is used, convergence 
is rapid and CPU times per iteration are competitive with the linear iteration scheme 
presented in Section 3.1, as summarized by Table I. 

The incidence array for this scheme is: 

N Re 
s 
A c”u . Vu dA 

+ jA VqP - T dA - j. aA #@II : T) n ds 

I 

----- 

‘\ 

s @V . u dA A 

Boundary terms 

s p”(x) Ncauu : T dx 

( .r N Re 4% . Vu dA 
1 

(1 
V+i . T dA 

1 

I #(nn . T) n ds iiA 

. 

i.l 
A PO . u dA) 

dh 
YG 

I p”(x) 2H dx 

+ j p”(x) Ncanu : T dx 

/ 

I 

\ 

'1 

\ 

k 

i 

- 

‘2 

(3.9) 
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The structure of the array is the same as that of (3.5) but the entries are different. 
p”(x) are the free surface basis functions in the Galerkin expansion of Iz(x)~ 

Equations (3.5) and (3.9) make apparent the interdependence of flsw field ant 
meniscus. In both incidence arrays, the upper right portion contains entries that put 
free surface unknowns into flow field equations. The degree of coupling depends on 
rhe relative magnitude of the terms involving these unknowns and obviously is 
controlled by the capillary number, IV,, . Similarly, the lower left portion contains 
entries that put flow lield unknowns into the free surface equations reflecting the 
sensitivity of meniscus shape to the underlying fluid motion. While the structure is the 
same for both iteration schemes, the rate of convergence is likely to depend on which 
scheme is chosen and on the magnitude of Nca . 

Calculations were programmed for the CDC CUBER 74 at the University oi 
Minnesota. Unknowns were numbered by columns in the y-direction (see Fig. I) and 
the matrices stored in band form. The flow field matrices required the largest storage 
and for an 11 + 4 mesh the matrix size is 386 + 81. Matrices were inverted with s? 
space-preserving, unsymmetric band solver [35]. Core requirements approached the 
limit of available storage, 150,000 64-bit octal words. 

The two iteration procedures just described are implemented with (2.8) and (2.9); 
Given a meniscus location, (2.8) is solved to generate a flow field; this flow field is 
then substituted into (2.9) to update the estimate of the meniscus shape. Except in the 

I i I I ! I I 
0 ! 2 3 4 5 

thmber Of Iterations 

FIG. 3. Convergence of iterative schemes: -, solution of normal stress boundary conditiori 
far a free surface by Newton’s method; - - -, solution of momentum and continuity equations via 
Newton’s method; - - -, overall iteration for free surface via normal stress iteration scheme: 
successive approximations; - - -, overall iteration for free surface via kinematic iteration scheme: 
successive approximations. 
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creeping flow limit (N,, = 0), (2.8) is nonlinear. When Newton’s method is employed 
to solve it, second-order convergence is achieved, as shown in Fig. 3. Iteration is 
continued until the maximum change in nodal values of velocity and pressure falls 
below 10-4. When the normal stress iteration scheme is employed, (2.9) is also non- 
linear. It too is solved by Newton’s method, which again gives second-order con- 
vergence (Fig. 3); iteration is continued until the maximum change in meniscus nodal 
heights is less than IO-$. While flow field and normal stress calculations exhibit 
second-order convergence, the overall iteration for x and h given by (2.8) and (2.9) is 
a Picard iteration scheme which, as is normal, becomes first order when it succeeds. 
See Fig. 3. 

HIGH 0. DLOW.7 HIGH cr I *Lowe 
A -b A 

80- 20160- 

z 

L 

16’ lo-’ IO0 IO IO2 2 lo-2 lo-’ IO” IO IO’ 

NC0 
z 

NCCl 

FIG. 4. Comparison of two iteration schemes: (a) number of iterations vs Nca ; (b) incremental 
iterations needed for a unit increase in Nca . 

The ranges of convergence of the two iteration schemes are shown in Fig. 4a. At 
low capillary numbers the normal stress scheme converges whereas the kinematic 
scheme does not, and conversely at high capillary numbers. At intermediate capillary 
numbers there is a range of overlap where both schemes succeed but both are slow to 
converge. To achieve convergence for NCa > 213 for the normal stress scheme and for 
NC, < 1 for the kinematic scheme, underrelaxation proved necessary. The rate of 
convergence in both at capillary numbers near one was less than first order. Because 
the time per iteration in each scheme is nearly the same (Table I), the one taking the 
fewer iterations is the one to choose in the overlap range. In both schemes, solutions 
were generated by raising or lowering log,,Nc, by a small amount and using the 
previous solution as an initial guess. The incremental work needed to get convergence 
for a unit change in log,, Nca is given in Fig. 4b; it is determined by numerically 
differentiating Fig. 4a. 

The convergence properties of these two schemes can be understood by studying 
the linearized problem generated by setting constant the matrices and vectors in (2.8) 
and (2.9) and scaling the two parts with iV1 and N2 chosen according to the 
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magnitude of S, relative to M and of S, relative to 1 The iteration procedure 
becomes 

++l) = M-l[b, - N,S&(“‘], (3.10) 

h+l) = B-l[lo2 - A$S,[M-~[~, - N,S,h,l”‘]]j 

= B-lb, - N2B-1S,M-1b, + NJV2 _ (3.IFj 

These are simplified by defining 

A E B-lb, - N,B-lS,M-l 

X EZ N,N;,B-%,M-%,) 

which lead to the following formulas for the iteration: 

bC?l’ = (1 + x + x2 + . . ~ + (3.14) 

+“+I) = M-lb, _ NIM-lSl~‘“;~ (3.15\ I 

toi is the initial estimate of the meniscus profile. The iteration obviously con- 
provided ktnj converges as IZ -+ co. 

The criterion of convergence can be expressed in terms of the matrix 

[tr(X g XT)]‘/” < $ (3.16‘! I 

From (3.13) it is plain that if the product N,N, is suhiciently small, the iteration con- 
verges; i.e., provided the magnitudes of S, and S, I the rectangular matrices that stem 
from the upper right and lower left portions of the incidence arrays (3.5) and (3.9), are 
small (m the sense of the norm in (3.16)) compared to M and 5 the iteration converges; 
Nloreover, convergence depends only on the product of IV, and N2. So, provided 
either measure of the coupling of flow field and meniscus shape is sufficiently small, 
convergence is attained. 

The iterations represented by (3.5) and (3.9) take the form of (3.10) and (3.11) bc’i 
have the added complication of nonlinearity. Under conditions in which the cor- 
responding linearized problem diverges the nonlinear problem does so also. In the 

kinematic iteration represented by (3.5), the magnitude of NI is controlled by the 
ratio of normal viscous stress to capillary pressure at the meniscus, i.e., the size of 
N - cs. Ef in the momentum equations viscous stress contributions dominate those of 
capillary pressure, the nonlinear iteration scheme converges; but when Nca becomes 
very small and capillarity dominates, the nonlinear scheme diverges. By contrast, m 
the normal stress iteration represented by (3.9), N2 is governed by the magnitude of 
the capillary number. Provided capillary terms dominate the normal stress boundary 
condition, couvergence is attained; however, as Ned _ increases and viscous normal 
stresses take over, N2 grows and the iteration diverges, 

#I/34/3-2 
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4. RESULTS 

At low Reynolds numbers the liquid sheet issuing from the sharp-cornered slot 
exhibits the phenomenon known as die swell, which is portrayed in Fig. 1. If the 
effect of gravity is insensible the sheet of Newtonian liquid reaches a final thickness 
approximately 20 % greater than the slot breadth, according to the finite-element 
calculation of Patton and Finlayson [36] for vanishingly small Reynolds number, no 
surface tension, and no slip on the channel walls. This solution is confirmed by 
earlier results of the present investigation [I I]. In the laboratory much more pronoun- 
ced die swell is often seen in non-Newtonian flow; yet at such low shear rates that the 
same fluid behaves in the Newtonian manner, swell ratios of approximately 1.2 have 
been measured [37]. 

TABLE II 
Wall Shear Stress at Exit and Integrated Wall Stress 

for No-Slip and Slip (0 = lo-?) Cases 

Shear stress in die swell 
Size of smallest element (mesh) 

( x half-width) Stress (x = 0-) Shear force (= slZ 71u &) 

0.08 
0.08a 
0.08b 
0.08 
0.08 
0.06~ 
0.04 

0.08a 
0.08b 
0.08 
0.06~ 

No slip 
(9 x 3) 7.9 
(9 x 3) 8.1 

(10 x 4) 8.3 
(11 x 4) 

L. 
8.1 

(11 x 4) 8.1 
(13 x 4) 8.4 
(12 x 4) 12.2 

Slip (B = lo-3 
(9 x 3) 5.8 

(10 x 4) 5.8 
(11 x 4) 5.8 
(13 x 4) 5.7 

6.5 
6.6 
6.5 
6.5 
6.5 
6.5 
6.6 

6.4 
6.4 
6.4 
6.4 

a a, b, c indicate identical meshes. 

4.1. Flow with No Sip at Channel Wall 

As the finite-element mesh is refined in the vicinity of the contact/separation line, 
our no-slip solutions show ever-increasing stress in the neighborhood of the line and 
thus provide strong evidence of a singularity at the line: compare Table II and the 
shear stress distribution plotted for reference in Fig. 5. These creeping flow (N,, = 0) 
results accord with the expectation that shear stress on the wall in the vicinity of the 
contact line follows the relation 

-rcg cc (-x)-l/2, x < 0, 
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i.e,, the expectation that the singularity is integrable to ;a finite shear force oil any 
finite length of wall, as indicated by the model analysis of Michael [7] and the 
numerical computations of circular die swell by Nickel1 rt ai. [18j. 

8 

FIG. 5. Upstream wall shear stress profile ~~~ = 0; Arcs = X. 

Three-dimensional visualizations of the velocity, pressure, and subsidiary fields 
provide insight into the nature of the flow. The field of the main velocity componenr 
in Fig. 6a indicates the velocity rearrangement from parabolic to plug flow. Evident 
are velocity inflections, which may presage instability. The rearrangement is restric- 
ted to a small region near the exit plane and clearly the application of the inlet and 
outlet boundary conditions two or more half-diameters from the exit is a reasonable 
approximation. The field of the transverse velocity component is drawn to the same 
scale in Fig. 6b. It of course is much smaller, asymmetric, and significant only in the 
regions where rearrangement is occurring. The pressure falls linearly along the die, 
where it is driving a Poiseuille flow: and far downstream in the liquid sheet it caches 
zero. The pressure plot in Fig. 6c (note that the negative of the pressure is plotted) 
indicates a singularity at the separation lines, which raises the possibility of cavitation 
at the exit. However, the physics of cavitation in intense, anisotropic viscous stress 
fields is unknown (failure partiy in shear is a possibility not unrelated to the slip 
issue). The difference between the normal viscous stresses in the streamwise. T,, and 
transverse, 7,, , directions is shown in Fig. 6d. The plot reveals that even in Newlonian 
liquid, large normal stress differences can be generated near the exit plane. Vie assess 
the oscillations near the wall at the exit to be of numerical origin and to result from 
the representation of the solution by a finite rather than infinite basis. The solution 
satisfies both the continuity requirement, which dictates that the normal stress 
diEerence along the wall is zero (&jZs = 0 since there is no slip an& hence 2~ ?.:‘ m= O), 
and the normal stress condition along the interface. 

The latter dictates that on the interface the viscous normal stress, ‘r,,, , must balance 
the normal pressure force and the capillary pressure force of the meniscus. A; the 
exit the latter appears to remain bounded and thus if the normal pressure force is 
singular there, so must also be both the viscous normal stress and the normal stress 
difference, because 7tt - rlln = -2r,, . In the finite element solution the response to 
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the discontinuity in boundary condition is not a discontinuous normal stress dif- 
ference but rather one that oscillates within a neighborhood of the exit which shrinks 
as the mesh is refined near the exit. Figure 6e, the vorticity distribution, demonstrates 
the continual diffusive flux of vorticity across the flow field, as much entering at one 
wall as leaves at the other. In the free liquid sheet, as much is generated by flow along 
the one curved meniscus as is consumed at the other. Symmetry also makes the net 
vorticity zero in each cross section. Far downstream the meniscus becomes flat and 
the vorticity level ultimately reaches zero everywhere in the flow. 

Cd) 

FIG. 6. Three-dimensional visualization of flow field: Re = 0, Nca = co, B = 0. (a) u-velocity 
field; (b) v-velocity field; (c) pressure: scaled by -0.4; (d) N1 3 T,, - T,, , streamwise minus 
perpendicular normal stress, scaled by -0.4; (e) vorticity, 5 = uV - v, , scaled by 0.6. 



SEPARATING FREE SURFACE FLOW WITH SLIP 305 

4.2. Effect of Sip Coeflcient Boundary Condition 

Results for values of the slip parameter, B, from 0 to 1 in creeping flow are plotted 
in Figs. 5,7, and 9. Shear stress on the wall upstream of the contact line when 
is compared with the no-slip distribution in Fig. 5. Results of mesh refinement are 
summarized in Table II; they strongly indicate that the apparent singularity in the 
no-slip solution is removed by adopting Navier’s slip hypothesis rather than the no- 
slip postulate. Evidently any value of the slip coefficient /3 in (1. I) greater than zero 
suffices. This raises the question of the sensitivities of the various locales and aspects 
of the fiow field to the magnitude of & or of the dimensionless slip parameter 

FIG. 7. Three-dimensional visualization of flow field: Re = 0, Nc, = co, I3 = IO-“, Same 
definitions and scaling as in Fig. 6. 
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There are three integral measure of the effect of slip: the die-swell ratio h(L)/b; the 
meniscus separation inclination, which is defined as the slope of a plane through the 
contact/separation line and the meniscus at a fixed distance downstream; and the 
extrapolation of upstream pressure on the wall to the channel exit. The effect of slip 
on these at N,, = 0 is described elsewhere [I 11. For reference, the die-swell ratios for 
creeping flow and vanishing surface tension are plotted in Fig. 9. When B < lo-“, 
‘slip has no perceptible influence on die-swell ratio; nor does it influence meniscus 
separation inclination, or extrapolated pressure at the exit. 

FIG.. 8. Three-dimensional visualization of flow field: Re = 20, Nca = co, B = 0. Same de- 
finitions and scaling as in Fig. 6. 
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SWELL RATIO 
h(LI 

b I./ 

FIG. 9. Die swell as a function of siip parameter, 

In contrast, when B > 1P3 the die-swell ratio is signScantly lowered. Slip reduces 
momentum transfer to the wall upstream of the slot exit. The liquid exits with higher 
momentum content and so evolves into a faster moving, thinner sheet downstream. 
The reduction in swell ratio with slip of a viscoelastic non-Newtonian “liquid can be 

ramatic, as reported by Kraynik [X3]. 
Our results point toward similar though much less pronounced swell reduction by 

slip of Newtonian liquid in the high shear region just upstream of the exir of a round 
channel. 

Three-dimensional visualizations of the flow field when B = IO-” are given ii? 
Fig. 7. Although the x-velocity component still undergoes considerable rearrangement 
and an inflection point in the downstream region is still present, the die swell is 
clearly reduced. The pressure gradient is slightly less than that in the no-slip case and 
hence the pressure profile is flatter. The vorticity is no longer singular at the exit; 
moreover, it is lower in magnitude throughout the channel, for the velocity proi% is 
flatter. There are corresponding reductions in the y-velocity profiie and normal stress 
digerence but the normal stress differences near the exit plane continae to be sign%- 
cant. 

4.3. Effect of Restricting Slip to Exit Region 

The slip coefficient boundary condition (1.1) generates appreciable velocity dis- 
continuity only where the wall shear stress is high. The question arises as to whether 
restricting slip to the neighborhood upstream of the separation,/contac: line can 
effectively remove the stress singularity yet leave the velocity and pressure fields 
significantly less altered from those of the no-slip case. Calculations were made in 
which slip was allowed only within 0.18b of the exit. A uniform slip coefficient B > @ 
was specified for -0.18b < x < 0 and B = 5 WBS specified for x < -O.l8b. Either 
two or three elements were placed within this region. Comparison of the resuits 
proved that the solution is insensitive to the number of elements in this region. How- 
ever, it was necessary to use a refined mesh further upstream than in cases of uniform 
siip. The reason is the added velocity rearrangement and concomitanr increase in 
stress near the point of change in boundary condition, i.e., at x = -O.lSb. 

The effect of local slip on die swell is shown in Fig. 10. en B < iCta within 
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0.18b of the exit and B = 0 elsewhere, the flow is indistinguishable from that predic- 
ted for the case of uniform slip parameter B everywhere on the channel wall. Thus 
local slip near the contact/separation line can reduce die swell as much as a uniform 
slip parameter does. This finding is particularly relevant to the possibility that the slip 
coefficient /I is itself sensitive to the local stress levels (which would mean that the 
boundary condition is no longer linear in character). 

10-I 

*(!+I) ,6* - - - - - 

Id3 

m -- 

M6 1G4 d IO” 

FIG. 10. Difference in swell between uniform slip and local slip vs. B. NR~ = 0, NC,, = ~0. 

For non-Newtonian flow the effect of local slip could be magnified. The reduction 
in shear stress could lead to a lessening of the non-Newtonian contribution to normal 
stress and hence to a smaller swell ratio [39]. 

4.4. Effect of Fluid Inertia 

To this point all of the results cited are for creeping flow, the low Reynolds number 
limit in which inertial effects are insensible; As Reynolds number is raised, momentum 
convection increasingly alters the velocity and pressure fields and the die-swell ratio. 
Viscous diffusion of momentum upstream is countered by convection downstream, 
and upstream influence of the exit region is thereby diminished. The parabolic velocity 
distribution persists further and further toward the exit, until in the limit as N,, -+ co 
(laminar flow!) it reaches the exit plane. In the extreme case of infinite Reynolds 
number the swell ratio from Harmon’s [40] analysis modified to apply to a planar 
case is 516. As the Reynolds number diminishes, the upstream influence increases the 
momentum transfer to the wall owing to the steepening velocity gradient and attendant 
rise in shear stress at the wall. Less momentum remains downstream and hence a 
thicker, slower sheet is produced, provided the pressure field does not alter the momen- 
tum balance. The finite-element calculations confirm that the swell ratio does rise 
notwithstanding whatever momentum effect the pressure field has. 

The range of upstream influence as a function of NR, is depicted in Fig. 11. At zero 
Reynolds number, the centerline velocity is perturbed more than 2 % from its up- 
stream value even at distances greater than 0.4b upstream from the exit. However, at 
NRe = 20, this upstream effect is limited to a distance less than O.lb upstream. 

Beyond the exit plane the liquid sheet relaxes toward plug-like flow, primarily by 
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viscous diffusion of momentum across the flow. With increasing Reynolds number the 
relaxing velocity profiles are shifted further downstream and thus the tiow develop- 
ment length rises. This is clear in the three-dimensional visualization of flow af 
-NRe = 20 in Fig. 8. Whereas at N,, = 0, the x-veloxity profile rearranges to within 
1 7; of the final value in approximately 1.5 half-widths, at NR, = 20 this transition 
takes more than two half-widths. 

]FlG. 11. Upstream influence on the velocity field and its reduction with increasing Reynolds 
nmber. 

ecause the upstream velocity field rearrangement is confined to a region near the 
exit the rapid pressure and vorticity variations are also confined to a small region as 
is evident in Fig. 8. The normal stress difference near the exit plane is much reduced 
at the higher Reynolds number. 

4.5. &&Sect of Surface Tension 

Uniform surface tension in the free meniscus can act only where the meniscus is 
curved. There it develops the capillary pressure difference p - p. = 217~ which, 
through the pressure field of which it is a part, can influence the entire flow. From 
another point of view the action of surface tension in the meniscus at the contact,/ 
separation line is to transmit to the solid a certain amount of momentum which the 
curved meniscus removes from the liquid downstream of the exit plane as the velocity 
distribution relaxes toward plug flow. The effect is to reduce the swell ratio. 

The appropriate dimensionless parameter is the capillary number, which measures 
the ratio of viscous to surface tension forces. If surface tension w-ere absent, the normal 
stress boundary condition would require the pressure difference across the free 
surface to be exactly compensated by the viscous normal stress on the liquid side. 
Surface tension enters and alters this balance increasingly as Nca = ~U/CJ is raised. In 
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Fig. 12, the straightening of the meniscus profile with rising surface tension is shown. 
The high tension calculations were made with the normal stress iteration scheme and 
the low tension ones with the kinematic iteration scheme. At Nca = 2 the meniscus 
was calculated with both schemes and the results were identical on the scaIe of Fig. 12. 
On a greatly increased scale, the differences of meniscus profiles from the two schemes 
are shown in Fig. 13. The discrepancy at all points along the meniscus is less than 1 %. 

FIG. 12. Meniscus profile as a function of capillary number. - - -, kinematic iteration scheme; 
-, normal stress iteration scheme. 

f 
ESTIMATED LIMIT OF ACCURACY 

-7 

FIG. 13. Comparison of kinematic and normal stress iteration scheme solutions in overlap 
region. NRe = 0, B = 0. 

Richardson’s Solution 
For N&<l. Re=O 

IO 

bps, 

FIG. 14. Comparison of Richardson’s 14411 asymptotic results for swell ratio with finite element 
calculations. 
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These results can be compared with Richardson’s [41] asymptotic prediction for 
vanishingly small Reynolds and capillary numbers. Richardson used the Wiener- 
Hopf technique to generate the perturbation solution shown in Eig~ 14. That solution 
is seen to be accurate for Nca < 0.1 and to break down progressively as capillary 
number increases. Richardson’s approach is similar to the first iteration in the normal 
stress scheme of Section 3.2; however, he used a linc&zzednormal stress condition, In 
view of the convergence behavior of the normal stress iteration scheme (Section 3.3), 
it is not surprising that his approach leads to a good approximation only at low 
capillary numbers, 

5. CONCLUDING P\EMARKS 

The finite element technique has proved to be a valuable aid in gaining under- 
standing of meniscus flows. However, more remains to be learned about optimizing 
the technique itself. A framework has been presented from which finite element free 
surface iteration schemes can be developed, and evaluated as to their likelihood of 
convergence. Two schemes have been investigated and it was found that surface 
tension discriminated between them. At low surface tension (Nc, > 4), a scheme 
employing the kinematic condition for calculating free surface shanes converged 
rapidly while a scheme employing the normal stress boundary condition for calculating 
shapes did not. At high surface tension (NC& < 1) the opposite was true. For p/c% M 1: 
both schemes converged but convergence was slow. It is conceivable that convergence 
in this intermediate range might be most rapid if a suitabie weighted sum of the two 
schemes were used. Another possibility is a hybrid iteration scheme inwhich the normal 
stress condition (Section 3.2) is used to determine the free surface shape in regions 
where high meniscus curvature makes surface tension important; and the kinematic 
scheme (Section 3.1) is employed elsewhere. Both iteration schemes discussed here are 
based on successive approximations to the free meniscus shape and will exhibit 
linear convergence at best. It seems likely that a Newton scheme based on the entire 
equation set (velocity, pressure, and free meniscus location unknowns) would enhance 
convergence. Even here, options exist regarding the way the free surface boundary 
conditions, the momentum equations, and the continuity equations are combined. 

The effect of replacing the usual no-slip boundary condition by a slip boundary 
condition on solid boundaries was investigated in the die-swell problem. It was found 
that even if slip is possible, the no-slip boundary condition is accurale for Newtunian 
die swell provided &jb < 10-3; however, slip at the wall alleviates the apparent stress 
singularity at the separation/contact line. When ,&,‘b > IO-“, slip reduces die swell 
even of Newtonian liquid and might produce yet larger elects for non-l"aewtonian 
liquid. Even allowing only for local slip near the contact line where the stresses are 
greatest is suhicient to reduce die swell provided ,&/b > 1P3. 

Die swell is also affected by other momentum sources, notably inertial and surface 
tension forces. Our results show that increasing inertial effects by raising Reynolds 
number decreases the upstream influence of the die exit on the velocity field, hence 
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reducing the momentum transfer to the die wall and decreasing die swell. While 
decreasing upstream influence, increasing Reynolds number increases the downstream 
lenth needed to achieve plug flow. Surface tension stresses were shown to straighten 
the meniscus profile and hence reduce die swell. While the results of Section 4 were 
generated by considering each momentum source independently, of course they may 
act in concert. Figure 15 shows the compounding effect of surface tension and slip 
along the die wall acting together to decrease die swell. Hence the finite-element 
technique can handle, in an easy manner, the combination of more than one momen- 
tum source, and further study toward optimization of free meniscus calculations 
seems warranted. 

1.00 
0 0.5 1.0 1.5 2.0 

L 
b 

FIG. 15. Profile straightening compounded by the actions of surface tension and slip together. 
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